Structural Aspects of Saltatory Particle Movement

نویسنده

  • Lionel I. Rebhun
چکیده

A variety of cells possess particles which show movements statistically different from Brownian movements. They are characterized by discontinuous jumps of 2-30 micro at velocities of 0.5-5 micro/sec or more. A detailed analysis of these saltatory, jumplike movements makes it most likely that they are caused by transmission of force to the particles by a fiber system in the cell outside of the particle itself. Work with isolated droplets of cytoplasm from algae demonstrates a set of fibers involved in both cytoplasmic streaming and saltatory motion, suggesting that both phenomena are related to the same force-generating set of fibers. Analysis of a variety of systems in which streaming and/or saltatory movement occurs reveals two types of fiber systems spatially correlated with the movement, microtubules and 50 A microfilaments. The fibers in Nitella (alga) are of the microfilament type. In other systems (melanocyte processes, mitotic apparatus, nerve axons) microtubules occur. A suggestion is made, based on work on cilia, that a microtubule-microfilament complex may be present in those cases in which only microtubules appear to be present, with the microfilament closely associated with or buried in the microtubule wall. If so, then microfilaments, structurally similar to smooth muscle filaments, may be a force-generating element in a very wide variety of saltatory and streaming phenomena.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A stochastic model for patterning of the cytoplasm by the saltatory movement.

In various cases of importance for animal physiology and development, a specific distribution of cellular components is achieved through the active transport of these components along cytoskeletal fibres by molecular motors. The pattern-generating transport is stochastic; it is commonly referred to as the saltatory movement which means frequent, random change of direction of movement of individ...

متن کامل

Microinjected fluorescent polystyrene beads exhibit saltatory motion in tissue culture cells

Microinjected 0.26-micron fluorescent, carboxylated microspheres were found to display classical saltatory motion in tissue culture cells. The movement of a given particle was characterized by a discontinuous velocity distribution and was unaffected by the activity of adjacent particles. The microspheres were translocated at velocities of up to 4.7 micron/s and sometimes exhibited path lengths ...

متن کامل

Characterization of mitotic motors by their relative sensitivity to AMP-PNP.

The relative sensitivities of the motors for mitotic chromosome movements and saltatory motion were compared using a nonhydrolyzable analog of ATP, AMP-PNP. K+AMP-PNP was microinjected into PtKl cells at the time of nuclear envelope disassembly or at anaphase onset. To produce a dose-response curve for the effect of AMP-PNP on the rate of movement, the intracellular concentration of AMP-PNP in ...

متن کامل

An Arabidopsis E3 ligase, SHOOT GRAVITROPISM9, modulates the interaction between statoliths and F-actin in gravity sensing.

Higher plants use the sedimentation of amyloplasts in statocytes as statolith to sense the direction of gravity during gravitropism. In Arabidopsis thaliana inflorescence stem statocyte, amyloplasts are in complex movement; some show jumping-like saltatory movement and some tend to sediment toward the gravity direction. Here, we report that a RING-type E3 ligase SHOOT GRAVITROPISM9 (SGR9) local...

متن کامل

An Arabidopsis E3 Ligase, SHOOT GRAVITROPISM9, Modulates the Interaction between Statoliths and F-Actin in Gravity Sensing W OA

Higher plants use the sedimentation of amyloplasts in statocytes as statolith to sense the direction of gravity during gravitropism. In Arabidopsis thaliana inflorescence stem statocyte, amyloplasts are in complex movement; some show jumping-like saltatory movement and some tend to sediment toward the gravity direction. Here, we report that a RING-type E3 ligase SHOOT GRAVITROPISM9 (SGR9) local...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 50  شماره 

صفحات  -

تاریخ انتشار 1967